正确理解功率MOSFET的RDS(ON)温度系数特性

一般,许多资料和教材都认为,MOSFET的导通电阻具备正的温度系数,所以能够并联工做。当其中一个并联的MOSFET的温度上升时,具备正的温度系数导通电阻也增长,所以流过的电流减少,温度下降,从而实现自动的均流达到平衡。一样对于一个功率MOSFET器件,在其内部也是有许多小晶胞并联而成,晶胞的导通电阻具备正的温度系数,所以并联工做没有问题。可是,当深刻理解功率MOSFET的传输特性和温度对其传输特性的影响,以及各个晶胞单元等效电路模型,就会发现,上述的理论只有在MOSFET进入稳态导通的状态下才能成立,而在开关转化的瞬态过程当中,上述理论并不成立,所以在实际的应用中会产生一些问题,本文将详细地论述这些问题,以纠正传统认识的局限性和片面性。 html

功率MOSFET传输特征 post

三极管有三个工做区:截止区、放大区和饱和区,而MOSFET对应的是关断区、饱和区和线性区。MOSFET的饱和区对应着三极管的放大区,而MOSFET的线性区对应着三极管的饱和区。MOSFET线性区也叫三极区或可变电阻区,在这个区域,MOSFETs基本上彻底导通。 spa

当MOSFET工做在饱和区时,MOSFET具备信号放大功能,栅极的电压和漏极的电流基于其跨导保持必定的约束关系。栅极的电压和漏极的电流的关系就是MOSFET的传输特性。 htm

其中,μn为反型层中电子的迁移率,COX为氧化物介电常数与氧化物厚度比值,W和L分别为沟道宽度和长度。 blog

温度对功率MOSFET传输特征影响 io

1 MOSFET转移特性 class

在MOSFET的数据表中,一般能够找到它的典型的传输特性。注意到25℃和175℃两条曲线有一个交点,此交点对应着相应的VGS电压和ID电流值。若称这个交点的VGS为转折电压,能够看到:在VGS转折电压的左下部分曲线,VGS电压必定时,温度越高,所流过的电流越大,温度和电流造成正反馈,即MOSFET的RDS(ON)为负温度系数,能够将这个区域称为RDS(ON)的负温度系数区域。 im

而在VGS转折电压的右上部分曲线,VGS电压必定时,温度越高,所流过的电流越小,温度和电流造成负反馈,即MOSFET的RDS(ON)为正温度系数,能够将这个区域称为RDS(ON)正温度系数区域。 d3

功率MOSFET内部晶胞的等效模型 数据

在功率MOSFET的内部,由许多单元,即小的MOSFET晶胞并联组成,在单位的面积上,并联的MOSFET晶胞越多,MOSFET的导通电阻RDS(ON)就越小。一样的,晶元的面积越大,那么生产的MOSFET晶胞也就越多,MOSFET的导通电阻RDS(ON)也就越小。全部单元的G极和S极由内部金属导体链接聚集在晶元的某一个位置,而后由导线引出到管脚,这样G极在晶元聚集处为参考点,其到各个晶胞单元的电阻并不彻底一致,离聚集点越远的单元,G极的等效串联电阻就越大。

正是因为串联等效的栅极和源极电阻的分压做用,形成晶胞单元的VGS的电压不一致,从而致使各个晶胞单元电流不一致。在MOSFET开通的过程当中,因为栅极电容的影响,会加重各个晶胞单元电流不一致。

功率MOSFET开关瞬态过程当中晶胞的热不平衡

从图2能够看出:在开通的过程当中,漏极的电流ID在逐渐增大,离栅极管脚距离近的晶胞单元的电压大于离栅极管脚距离远的晶胞单元的电压,即VG1>VG2>VG3>…,VGS电压高的单元,也就是离栅极管脚距离近的晶胞单元,流过的电流大,而离栅极管脚距离较远的晶胞单元,流过的电流小,距离最远地方的晶胞甚至可能尚未导通,于是没有电流流过。电流大的晶胞单元,它们的温度升高。

图2 功率MOSFET的内部等效模型

因为在开通的过程当中VGS的电压逐渐增大到驱动电压,VGS的电压穿越RDS(ON)的负温度系数区域,此时,那些温度越高的晶胞单元,因为正反馈的做用,所流过的电流进一步加大,晶胞单元温度又进一步上升。若是VGS在RDS(ON)的负温度系数区域工做或停留的时间越大,那么这些晶胞单元就越有过热击穿的可能,形成局部的损坏。

若是VGS从RDS(ON)的负温度系数区域到达RDS(ON)的正温度系数区域时没有造成局部的损坏,此时,在RDS(ON)的正温度系数区域,晶胞单元的温度越高,所流过的电流减少,晶胞单元温度和电流造成负反馈,晶胞单元自动均流,达到平衡。

相应的,在MOSFET关断过程当中,离栅极管脚距离远的晶胞单元的电压下降得慢,容易在RDS(ON)的负温度系数区域造成局部的过热而损坏。

所以,加快MOSFET的开通和关断速度,使MOSFET快速经过RDS(ON)的负温度系数区域,就能够减少局部能量的汇集,防止晶胞单元局部的过热而损坏。

基于上面的分析,能够获得:当MOSFET局部损坏时,若损坏的热点位于离栅极管脚距离的区域,则多是开通速度太慢产生的局部的损坏;若损坏的热点位于离栅极管脚距离的区域,则多是关断速度太慢产生的局部损坏。

在栅极和源极加一个大的电容,在开机的过程当中,就会常常发生MOSFET损坏的状况,正是因为额外的大的输入电容形成晶胞单元VGS电压更大的不平衡,从而更容易致使局部的损坏。

结论

1.MOSFET在开通的过程当中,RDS(ON)从负温度系数区域向正温度系数区域转化;在其关断的过程当中,RDS(ON)从正温度系数区域向负温度系数区域过渡。

2.MOSFET串联等效的栅极和源极电阻的分压做用和栅极电容的影响,形成晶胞单元的VGS的电压不一致,从而致使各个晶胞单元电流不一致,在开通和关断的过程当中造成局部过热损坏。

3.快速开通和关断MOSFET,能够减少局部能量的汇集,防止晶胞单元局部的过热而损坏。开通速度太慢,距离栅极管脚较近的区域局部容易产生局部过热损坏,关断速度太慢,距离栅极管脚较远的区域容易产生局部过热损坏。

 

转载于:https://www.cnblogs.com/derek32/p/3850496.html