Liquid/Solid Surface-01

Liquid/Solid Surface-01

  • Polyethylene(PE)

Some Slip Model

PE/Au

Atomistic representations of the PE/Au system at equilibrium (left) and under constant Couette flow (right).

Sgouros AP, Theodorou DN. Atomistic simulations of long-chain polyethylene melts flowing past gold surfaces: structure and wall-slip. Molecular Physics 2020:1–20. https://doi.org/10.1080/00268976.2019.1706775 .

PE/mica

在这里插入图片描述
Schematics for confined polymer melts.

Jeong S, Cho S, Kim JM, Baig C. Molecular mechanisms of interfacial slip for polymer melts under shear flow. J. Rheol. 2017;61(2):253–64. https://doi.org/10.1122/1.4974907 .

Oscillatory Couette flows

在这里插入图片描述
(Color online) Positions of fluid monomers (open blue circles) and wall atoms (filled gray circles). The upper wall oscillates with the angular frequency x in the ^x direction (indicated by the double-sided arrow), while the lower wall is always stationary

Priezjev NV. Molecular dynamics simulations of oscillatory Couette flows with slip boundary conditions. Microfluid Nanofluid 2013;14(1-2):225–33. https://doi.org/10.1007/s10404-012-1040-5 .

Some United-Atom PE Force Field

Details of the n-alkanes model

在这里插入图片描述

Siepmann JI, Karaborni S, Smit B. Simulating the critical behaviour of complex fluids. Nature 1993;365(6444):330–2. https://doi.org/10.1038/365330a0 .

The well-known (Siepmann-Karaborni-Smit) SKS united-atom potential model

INTERACTION form Parameter
Strectch U s t r e t c h i n g = k s t r 2 ( l l e q ) 2 U_{stretching}=\dfrac{k_{str}}{2}(l-l_{eq})^2 k s t r / k B = 452900   K / A ˚ 2 k_{str}/k_B=452900 \ K/\mathring{A}^2
l e q = 1.54   A ˚ l_{eq}=1.54 \ \mathring{A}
Bending U b e n d i n g = k b e n 2 ( θ θ e q ) 2 U_{bending}=\dfrac{k_{ben}}{2}(\theta-\theta_{eq})^2 k b e n / k B = 62500   K / r a d 2 k_{ben}/k_B=62500 \ K/rad^2
θ e q = 11 4 \theta_{eq}=114^\circ
Torsion U t o r s i o n a l = m = 0 3 a m c o s m ϕ U_{torsional}=\sum\limits_{m=0}^{3}a_mcos^m\phi a 0 / k B = 1010   K a_0/k_B=1010 \ K , a 1 / k B = 2019   K a_1/k_B=2019 \ K
a 2 / k B = 136.4   K a_2/k_B=136.4 \ K , a 3 / k B = 3165   K a_3/k_B=-3165 \ K
Non-bonded U l j ( r ) = 4 ϵ i j [ ( σ i j r ) 12 ( σ i j r ) 6 ] U_{lj}(r)=4\epsilon_{ij}[(\dfrac{\sigma_{ij}}{r})^{12}-(\dfrac{\sigma_{ij}}{r})^{6}] C H 2 : ϵ / k B = 47   K , σ = 3.93   A ˚ CH_2: \epsilon/k_B=47 \ K, \sigma=3.93 \ \mathring{A}
C H 3 : ϵ / k B = 114   K , σ = 3.93   A ˚ CH_3: \epsilon/k_B=114 \ K, \sigma=3.93 \ \mathring{A}

Baig C, Mavrantzas VG, Kröger M. Flow Effects on Melt Structure and Entanglement Network of Linear Polymers: Results from a Nonequilibrium Molecular Dynamics Simulation Study of a Polyethylene Melt in Steady Shear. Macromolecules 2010;43(16):6886–902. https://doi.org/10.1021/ma100826u .

这篇论文描述的参数并不能直接输入至LAMMPS里,需要进行一下单位换算,推荐一个 单位转换工具,换算后的结果如下:

k s t r = 900   k c a l / m o l / A ˚ 2 k_{str}=900 \ kcal/mol/ \mathring{A}^2

k b e n d = 124.2   k c a l / m o l / A ˚ 2 k_{bend}=124.2 \ kcal/mol/ \mathring{A}^2

a 0 = 2   k c a l / m o l , a 1 = 4.01   k c a l / m o l , a 2 = 0.271   k c a l / m o l , a 3 = 6.29   k c a l / m o l a_0=2 \ kcal/mol, a_1=4.01 \ kcal/mol, a_2=0.271 \ kcal/mol, a_3=-6.29 \ kcal/mol

C H 2 : ϵ = 0.0933   k c a l / m o l , C H 3 : ϵ = 0.2265   k c a l / m o l CH_2: \epsilon=0.0933 \ kcal/mol, CH_3: \epsilon=0.2265 \ kcal/mol

Capaldi et al.

在这里插入图片描述

Capaldi FM, Boyce MC, Rutledge GC. Molecular response of a glassy polymer to active deformation. Polymer 2004;45(4):1391–9. https://doi.org/10.1016/j.polymer.2003.07.011 .

Bolten et al.

在这里插入图片描述

Ko MJ, Waheed N, Lavine MS, Rutledge GC. Characterization of polyethylene crystallization from an oriented melt by molecular dynamics simulation. J Chem Phys 2004;121(6):2823–32. https://doi.org/10.1063/1.1768515 .