萌新刚学最小公倍数

qaqhtml

结论

对于任意非负整数 n , m n, m ,存在下述结论:
lcm ( C n 0 , C n 1 , , C n m ) = lcm ( n m + 1 , n m + 2 , , n + 1 ) n + 1 \text{lcm}(C_n^0,C_n^1,\cdots,C_n^m)=\frac{\text{lcm}(n-m+1,n-m+2,\cdots,n+1)}{n+1} web

记号

v p ( n ) v_p(n) 表示质数 p p n n 中的幂次。app

Kummer 定理

m , n ( 0 m n ) m, n (0\le m\le n) 为正整数, p p 为素数,则 C n m C_{n}^m p p 的幂次等于 ( n m ) (n-m) m m 作加法时在 p p 进制下的进位次数。svg

证:令 n = ( n k n k 1 n 0 ) p n=(\overline{n_kn_{k-1}\cdots n_0})_p ,则
v p ( n ! ) = i = 1 k n p i = i = 1 k n k n k 1 n i = i = 1 k j = i k n j p j i = j = 1 k n j i = 0 j 1 p i = i = 1 k n i p i 1 p 1 = 1 p 1 ( i = 1 k n i p i i = 1 k n i ) = 1 p 1 ( n i = 0 k n i ) v_p(n!)=\sum_{i=1}^k \left \lfloor \frac{n}{p^i} \right \rfloor=\sum_{i=1}^k \overline{n_kn_{k-1}\cdots n_i}=\sum_{i=1}^k \sum_{j=i}^k n_jp^{j-i}=\sum_{j=1}^k n_j \sum_{i=0}^{j-1} p^i=\sum_{i=1}^k n_i \frac{p^i-1}{p-1} \\ =\frac{1}{p-1}\left(\sum_{i=1}^k n_ip^i-\sum_{i=1}^k n_i \right)=\frac{1}{p-1}\left(n-\sum_{i=0}^k n_i \right)
m = ( a k a k 1 a 0 ) p , n m = ( b k b k 1 b 0 ) p m=(\overline{a_ka_{k-1}\cdots a_0})_p, n-m=(\overline{b_kb_{k-1}\cdots b_0})_p ,则
v p ( C n m ) = v p ( n ! ) v p ( m ! ) v p ( ( n m ) ! ) = 1 p 1 i = 0 k ( a i + b i n i ) v_p(C_n^m)=v_p(n!)-v_p(m!)-v_p((n-m)!)=\frac{1}{p-1}\sum_{i=0}^k (a_i+b_i-n_i) spa

故此式即 ( n m ) + m (n-m)+m p p 进制下的进位次数。翻译

推论

n = ( n k n k 1 n 0 ) p , m = ( m k m k 1 m 0 ) p n=(\overline{n_kn_{k-1}\cdots n_0})_p, m=(\overline{m_km_{k-1}\cdots m_0})_p k k 使 n n 不含前导 0,对 m m 无约束),则
max 0 l m v p ( C n l ) = { 0 n = p k + 1 1 0 m p i 0 1 max { i i 0 + 1 i 0 i < k , m n i n i 1 n i 0 + 1 ( n i 0 + 1 ) p i 0 } otherwise \max_{0\le l\le m} v_p(C_n^l)= \begin{cases} 0 & n=p^{k+1}-1 \\ 0 & m\le p^{i_0}-1 \\ \max\{i-i_0+1 | i_0\le i< k, m\ge \overline{n_i n_{i-1} \cdots n_{i_0+1}(n_{i_0}+1)}p^{i_0}\} & \text{otherwise} \end{cases} orm

这里当 n p k + 1 1 n\not= p^{k+1}-1 时,定义 i 0 = min { i n i p 1 } i_0=\min\{i \mid n_i\not= p-1\} xml

人话:先特判掉两种状况;咱们枚举每种进位次数,找到最小的 l l 使得 ( n l ) + l (n-l)+l 达到这个进位次数,而 i 0 i_0 右边的 p 1 p-1 是不能进的,因此找到第一个能进的 i 0 i_0 ,而后下边界就是 m i m i 1 m i 0 + 1 ( m i 0 + 1 ) p i 0 \overline{m_i m_{i-1} \cdots m_{i_0+1}(m_{i_0}+1)}p^{i_0} 了。htm

更近一步,若是咱们舍去 m m 的前导 0,获得 m = ( m t m t 1 m 0 ) p m=(\overline{m_tm_{t-1} \cdots m_0})_p ,则
max 0 l m v p ( C n l ) = { 0 n = p k + 1 1 0 t < i 0 t i 0 m < ( n t n t 1 n 0 ) + 1 max { q q t , t < j q , n t = 0 } i 0 + 1 otherwise \max_{0\le l\le m} v_p(C_n^l)= \begin{cases} 0 & n=p^{k+1}-1 \\ 0 & t<i_0 \\ t-i_0 & m<(\overline{n_tn_{t-1}\cdots n_0})+1 \\ \max\{q | q\ge t, \forall t<j\le q, n_t=0\}-i_0+1 & \text{otherwise} \end{cases} ip

证实

n = ( n k n k 1 n 0 ) p , m = ( m t m t 1 m 0 ) p n=(\overline{n_kn_{k-1}\cdots n_0})_p, m=(\overline{m_tm_{t-1}\cdots m_0})_p k , t k,t 都是使得 n , m n,m 不含前导 0)

首先特判掉 m = 0 m=0 的状况。

n = p k + 1 1 n=p^{k+1}-1 max v p ( l ) = v p ( n + 1 ) \max v_p(l)=v_p(n+1) ,此时 RHS = v p ( n + 1 ) v p ( n + 1 ) = 0 \text{RHS}=v_p(n+1)-v_p(n+1)=0

i 0 = min { i n i p 1 } i_0=\min\{i | n_i\not= p-1\} ,则 v p ( n + 1 ) = i 0 v_p(n+1)=i_0

i 1 = min { i ( n + 1 ) i ( n m + 1 ) i } i_1=\min\{i | (n+1)_i\not= (n-m+1)_i\} ,则 max v p ( l ) = i 1 \max v_p(l)=i_1

t < i 0 t<i_0 max v p ( l ) = i 0 \max v_p(l)=i_0 ,此时 RHS = 0 \text{RHS}=0

m < ( n t n t 1 n 0 ) + 1 m<(\overline{n_tn_{t-1}\cdots n_0})+1 ,事实上咱们翻译一下发现是 ( n + 1 ) m (n+1)-m t + 1 t+1 没退位,因此 max v p ( l ) = t \max v_p(l)=t ,而 v p ( n + 1 ) = i 0 v_p(n+1)=i_0 ,故 RHS = t i 0 \text{RHS}=t-i_0

otherwise \text{otherwise} 时,退位将会一直往上退,直到到达一个非 0 点,所以是 max { q q t , t < j q , n t = 0 } + 1 \max\{q | q\ge t, \forall t<j\le q, n_t=0\}+1 。而 v p ( n + 1 ) = i 0 v_p(n+1)=i_0 ,故 RHS = t i 0 \text{RHS}=t-i_0

咱们证实了 v p ( lcm ( C n 0 , C n 1 , , C n m ) ) = v p ( lcm ( n m + 1 , n m + 2 , , n + 1 ) n + 1 ) v_p(\text{lcm} (C_n^0, C_n^1, \cdots, C_n^m))=v_p(\frac{\text{lcm}(n-m+1,n-m+2,\cdots,n+1)}{n+1}) ,故咱们终于证实了原结论!
lcm ( C n 0 , C n 1 , , C n m ) = lcm ( n m + 1 , n m + 2 , , n + 1 ) n + 1 \text{lcm}(C_n^0,C_n^1,\cdots,C_n^m)=\frac{\text{lcm}(n-m+1,n-m+2,\cdots,n+1)}{n+1}