[深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心)

[深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心)

配合阅读:python

[深度概念]·Attention机制概念学习笔记git

[TensorFlow深度学习深刻]实战三·分别使用DNN,CNN与RNN(LSTM)作文本情感分析github

笔者在[深度概念]·Attention机制概念学习笔记博文中,讲解了Attention机制的概念与技术细节,本篇内容配合讲解,使用Keras实现Self-Attention文本分类,来让你们更加深刻理解Attention机制。bash

做为对比,能够访问[TensorFlow深度学习深刻]实战三·分别使用DNN,CNN与RNN(LSTM)作文本情感分析,查看不一样网络区别与联系。网络

 

1、Self-Attention概念详解

 

了解了模型大体原理,咱们能够详细的看一下究竟Self-Attention结构是怎样的。其基本结构以下学习

对于self-attention来说,Q(Query), K(Key), V(Value)三个矩阵均来自同一输入,首先咱们要计算Q与K之间的点乘,而后为了防止其结果过大,会除以一个尺度标度 \sqrt{d_k} ,其中 d_k 为一个query和key向量的维度。再利用Softmax操做将其结果归一化为几率分布,而后再乘以矩阵V就获得权重求和的表示。该操做能够表示为 Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})Vui

这里可能比较抽象,咱们来看一个具体的例子(图片来源于https://jalammar.github.io/illustrated-transformer/,该博客讲解的极其清晰,强烈推荐),假如咱们要翻译一个词组Thinking Machines,其中Thinking的输入的embedding vector用 x_1 表示,Machines的embedding vector用 x_2 表示。.net

当咱们处理Thinking这个词时,咱们须要计算句子中全部词与它的Attention Score,这就像将当前词做为搜索的query,去和句子中全部词(包含该词自己)的key去匹配,看看相关度有多高。咱们用 q_1 表明Thinking对应的query vector, k_1 及 k_2 分别表明Thinking以及Machines对应的key vector,则计算Thinking的attention score的时候咱们须要计算 q_1 与 k_1,k_2 的点乘,同理,咱们计算Machines的attention score的时候须要计算q_2 与 k_1,k_2 的点乘。如上图中所示咱们分别获得了q_1 与 k_1,k_2 的点乘积,而后咱们进行尺度缩放与softmax归一化,以下图所示:翻译

显然,当前单词与其自身的attention score通常最大,其余单词根据与当前单词重要程度有相应的score。而后咱们在用这些attention score与value vector相乘,获得加权的向量。code

若是将输入的全部向量合并为矩阵形式,则全部query, key, value向量也能够合并为矩阵形式表示

其中 W^Q, W^K, W^V 是咱们模型训练过程学习到的合适的参数。上述操做便可简化为矩阵形式

 2、Self_Attention模型搭建

 

笔者使用Keras来实现对于Self_Attention模型的搭建,因为网络中间参数量比较多,这里采用自定义网络层的方法构建Self_Attention,关于如何自定义Keras能够参看这里:编写你本身的 Keras 层

Keras实现自定义网络层。须要实现如下三个方法:(注意input_shape是包含batch_size项的

  • build(input_shape): 这是你定义权重的地方。这个方法必须设 self.built = True,能够经过调用 super([Layer], self).build() 完成。
  • call(x): 这里是编写层的功能逻辑的地方。你只须要关注传入 call 的第一个参数:输入张量,除非你但愿你的层支持masking。
  • compute_output_shape(input_shape): 若是你的层更改了输入张量的形状,你应该在这里定义形状变化的逻辑,这让Keras可以自动推断各层的形状。

实现代码以下:

from keras.preprocessing import sequence
from keras.datasets import imdb
from matplotlib import pyplot as plt
import pandas as pd

from keras import backend as K
from keras.engine.topology import Layer


class Self_Attention(Layer):

    def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(Self_Attention, self).__init__(**kwargs)

    def build(self, input_shape):
        # 为该层建立一个可训练的权重
        #inputs.shape = (batch_size, time_steps, seq_len)
        self.kernel = self.add_weight(name='kernel',
                                      shape=(3,input_shape[2], self.output_dim),
                                      initializer='uniform',
                                      trainable=True)

        super(Self_Attention, self).build(input_shape)  # 必定要在最后调用它

    def call(self, x):
        WQ = K.dot(x, self.kernel[0])
        WK = K.dot(x, self.kernel[1])
        WV = K.dot(x, self.kernel[2])

        print("WQ.shape",WQ.shape)

        print("K.permute_dimensions(WK, [0, 2, 1]).shape",K.permute_dimensions(WK, [0, 2, 1]).shape)


        QK = K.batch_dot(WQ,K.permute_dimensions(WK, [0, 2, 1]))

        QK = QK / (64**0.5)

        QK = K.softmax(QK)

        print("QK.shape",QK.shape)

        V = K.batch_dot(QK,WV)

        return V

    def compute_output_shape(self, input_shape):

        return (input_shape[0],input_shape[1],self.output_dim)

这里能够对照一中的概念讲解来理解代码

 

若是将输入的全部向量合并为矩阵形式,则全部query, key, value向量也能够合并为矩阵形式表示

上述内容对应

WQ = K.dot(x, self.kernel[0])
WK = K.dot(x, self.kernel[1])
WV = K.dot(x, self.kernel[2])

 

其中 W^Q, W^K, W^V 是咱们模型训练过程学习到的合适的参数。上述操做便可简化为矩阵形式

上述内容对应(为何使用batch_dot呢?这是因为input_shape是包含batch_size项的

QK = K.batch_dot(WQ,K.permute_dimensions(WK, [0, 2, 1]))
QK = QK / (64**0.5)
QK = K.softmax(QK)
print("QK.shape",QK.shape)
V = K.batch_dot(QK,WV)

这里 QK = QK / (64**0.5) 是除以一个归一化系数,(64**0.5)是笔者本身定义的,其余文章可能会采用不一样的方法。

 

3、训练网络

项目完整代码以下,这里使用的是Keras自带的imdb影评数据集

#%%

from keras.preprocessing import sequence
from keras.datasets import imdb
from matplotlib import pyplot as plt
import pandas as pd

from keras import backend as K
from keras.engine.topology import Layer


class Self_Attention(Layer):

    def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(Self_Attention, self).__init__(**kwargs)

    def build(self, input_shape):
        # 为该层建立一个可训练的权重
        #inputs.shape = (batch_size, time_steps, seq_len)
        self.kernel = self.add_weight(name='kernel',
                                      shape=(3,input_shape[2], self.output_dim),
                                      initializer='uniform',
                                      trainable=True)

        super(Self_Attention, self).build(input_shape)  # 必定要在最后调用它

    def call(self, x):
        WQ = K.dot(x, self.kernel[0])
        WK = K.dot(x, self.kernel[1])
        WV = K.dot(x, self.kernel[2])

        print("WQ.shape",WQ.shape)

        print("K.permute_dimensions(WK, [0, 2, 1]).shape",K.permute_dimensions(WK, [0, 2, 1]).shape)


        QK = K.batch_dot(WQ,K.permute_dimensions(WK, [0, 2, 1]))

        QK = QK / (64**0.5)

        QK = K.softmax(QK)

        print("QK.shape",QK.shape)

        V = K.batch_dot(QK,WV)

        return V

    def compute_output_shape(self, input_shape):

        return (input_shape[0],input_shape[1],self.output_dim)

max_features = 20000



print('Loading data...')

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
#标签转换为独热码
y_train, y_test = pd.get_dummies(y_train),pd.get_dummies(y_test)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')



#%%数据归一化处理

maxlen = 64


print('Pad sequences (samples x time)')

x_train = sequence.pad_sequences(x_train, maxlen=maxlen)

x_test = sequence.pad_sequences(x_test, maxlen=maxlen)

print('x_train shape:', x_train.shape)

print('x_test shape:', x_test.shape)

#%%

batch_size = 32
from keras.models import Model
from keras.optimizers import SGD,Adam
from keras.layers import *
from Attention_keras import Attention,Position_Embedding


S_inputs = Input(shape=(64,), dtype='int32')

embeddings = Embedding(max_features, 128)(S_inputs)


O_seq = Self_Attention(128)(embeddings)


O_seq = GlobalAveragePooling1D()(O_seq)

O_seq = Dropout(0.5)(O_seq)

outputs = Dense(2, activation='softmax')(O_seq)


model = Model(inputs=S_inputs, outputs=outputs)

print(model.summary())
# try using different optimizers and different optimizer configs
opt = Adam(lr=0.0002,decay=0.00001)
loss = 'categorical_crossentropy'
model.compile(loss=loss,

             optimizer=opt,

             metrics=['accuracy'])

#%%
print('Train...')

h = model.fit(x_train, y_train,

         batch_size=batch_size,

         epochs=5,

         validation_data=(x_test, y_test))

plt.plot(h.history["loss"],label="train_loss")
plt.plot(h.history["val_loss"],label="val_loss")
plt.plot(h.history["acc"],label="train_acc")
plt.plot(h.history["val_acc"],label="val_acc")
plt.legend()
plt.show()

#model.save("imdb.h5")

 

4、结果输出 

(TF_GPU) D:\Files\DATAs\prjs\python\tf_keras\transfromerdemo>C:/Files/APPs/RuanJian/Miniconda3/envs/TF_GPU/python.exe d:/Files/DATAs/prjs/python/tf_keras/transfromerdemo/train.1.py
Using TensorFlow backend.
Loading data...
25000 train sequences
25000 test sequences
Pad sequences (samples x time)
x_train shape: (25000, 64)
x_test shape: (25000, 64)
WQ.shape (?, 64, 128)
K.permute_dimensions(WK, [0, 2, 1]).shape (?, 128, 64)
QK.shape (?, 64, 64)
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 64)                0
_________________________________________________________________
embedding_1 (Embedding)      (None, 64, 128)           2560000
_________________________________________________________________
self__attention_1 (Self_Atte (None, 64, 128)           49152
_________________________________________________________________
global_average_pooling1d_1 ( (None, 128)               0
_________________________________________________________________
dropout_1 (Dropout)          (None, 128)               0
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 258
=================================================================
Total params: 2,609,410
Trainable params: 2,609,410
Non-trainable params: 0
_________________________________________________________________
None
Train...
Train on 25000 samples, validate on 25000 samples
Epoch 1/5
25000/25000 [==============================] - 17s 693us/step - loss: 0.5244 - acc: 0.7514 - val_loss: 0.3834 - val_acc: 0.8278
Epoch 2/5
25000/25000 [==============================] - 15s 615us/step - loss: 0.3257 - acc: 0.8593 - val_loss: 0.3689 - val_acc: 0.8368
Epoch 3/5
25000/25000 [==============================] - 15s 614us/step - loss: 0.2602 - acc: 0.8942 - val_loss: 0.3909 - val_acc: 0.8303
Epoch 4/5
25000/25000 [==============================] - 15s 618us/step - loss: 0.2078 - acc: 0.9179 - val_loss: 0.4482 - val_acc: 0.8215
Epoch 5/5
25000/25000 [==============================] - 15s 619us/step - loss: 0.1639 - acc: 0.9368 - val_loss: 0.5313 - val_acc: 0.8106

 

5、Reference

 

1.https://zhuanlan.zhihu.com/p/47282410

 

个人博客即将同步至腾讯云+社区,邀请你们一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=33mf4d7ia3s48